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SPATIAL DATA ANALYSIS 

1.1 Neighbourhood Operations 

1.1.1 Local Neighbourhood 

The general objective of a neighbourhood operation is to analyze the characteristics and/or 

spatial relationships of locations surrounding some specific (control) locations. Note that the 

control locations are actually part of the neighbourhood to be analyzed. Neighborhood 

operations are those that combine a small area or neighborhood of pixels to generate an output 

pixel. Thus, in fact, spatial interpolation techniques are a type of neighbourhood operations, 

because they aim to estimate the values at unsampled locations based on values at sampled 

locations (Carranza, 2009). These are incremental in their behaviour or operation. They work 

within a small neighbourhood of pixels to change the value of the pixel at the Centre of that 

neighbourhood, based on the local neighbourhood statistics. Then this process is incremented 

to the next pixel in the same row and it continued until the whole raster has been processed. 

Here the dealing data are of implemented 3-D character. Neighbourhood processes can be used 

to simplify or generalize discrete rasters (Liu and Mason, 2009). Neighbourhood operations 

applied to raster maps are basically filtering operations. Filtering can be performed in the time 

domain, frequency domain or spatial domain. Filtering in the spatial domain is a basic function 

in GIS. Filtering of a raster map involves an equal-sided filter window, also called a “kernel” 

or “template”, which moves across a raster map one pixel at a time. A filter has an odd number 

of pixels on each of its sides so that it defines a symmetrical neighbourhood about central pixel. 

The simplest filter is a square of  pixels (Carranza, 2009). The applications of neighborhood 

operators are many, ranging from digital filters to techniques for sharpening, transforming, and 

warping images. 
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Table 1.1. Summary of local pixel statistical operations, their functionality and input/output 

data format 

Statistic Input format Functionality Data type 

Variety 

  

  

  

Mean 

Only rasters. If a number is input, 

it will be converted to a raster 

constant for that 

value                   values occurring 

in the input rasters 

Reports the number of different 

DN values occurring in the input 

rasters 

  

Reports the average DN value 

among Output is floating point 

the input rasters 

Output is 

integer 

  

  

Output is 

floating point 

Standard 

deviation 

Rasters, numbers and constants Reports the standard deviation of 

the DN values among the input 

rasters 

Output is 

floating point 

Median 

  

  

  

Sum 

  

Range 

  

Maximum 

Minimum 

Majority 

  

  

  

  

Minority 

  

  

  

  

Only rasters. If a number is input, 

it will be converted to a raster 

constant for that value 

Reports the middle DN value 

among the input raster pixel 

values. With an even number of 

inputs, the values are ranked and 

the middle two values are 

averaged. If inputs are all 

integer, output will be truncated 

to integer 

Reports the total DN value 

among the input rasters 

Reports the difference between 

maximum and minimum DN 

value among the input raster 

Reports the highest DN value 

among the input rasters 

Reports the lowest DN value 

among the input rasters 

Reports the DN value which 

occurs most frequently among 

the input rasters. If no clear 

majority, output ¼ null, for 

example if there are three inputs 

all with different values. If all 

inputs have equal value, output 

¼ input 

Reports the DN value which 

occurs least frequently among 

the input rasters. If no clear 

minority, as majority 

If only two inputs, where 

different, 

output ¼ null. If all inputs equal, 

output ¼ input. If only one input, 

output ¼ input 

  

  

  

If inputs are all 

integer, output 

will be integer, 

unless one is a 

float, then the 

output will be a 

float 

  

  

  

  

  

(Source: Liu and Mason, 2009) 
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1.1.1.1 Distance 

Mapping distance allows the calculation of the proximity of any raster pixel to/from a set of 

target pixels, to determine the nearest or to gain a measure of cost in terms of distance. Here 

the value assigned to the output pixel is a function of its position in relation to another pixel. 

The input is a discrete raster image, in which the target pixels are coded, with a value of 1 

against a background of 0 (Fig. 1.1a). This operation involves the use of a straight line distance 

function, which calculates the Euclidean distance from every pixel to the target pixels (Fig. 

1.1b). 

The distance transformation transforms a feature or area of raster cells into an area based on 

given distances. One single distance can be used-for example, 10 m from the well or multiple 

distances for example 50 m, 100 m, 150 m, 200 m and 250 m from the road for the 

transformation. The distance transformation geographic information analysis is often used to 

show the geographic extent of events (e.g., noise from traffic, leaking of oil tanks into the 

ground) as a thing. In these uses the distances correspond to model or assumed values regarding 

the process underlying the events. This ability to transform from process to pattern is perhaps 

the single most important reason for the significance of this geographic information analysis 

type (Harvey, 2008).    

The output pixel values represent the Euclidean distance from the target pixel centers to every 

other pixel Centre and are coded in the value units of the input raster, usually meters, so that 

the input raster will usually contain integers and the output normally floating-point numbers. 

Then the calculated distance raster may then be further reclassified for used as input to more 

complex multi-criteria analysis or used within a cost-weighted distance analysis. 
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Spread operation: calculating the distance 

Fig. 1.1. (a) An input discrete (binary) raster, (b) the straight line or Euclidean distance 

calculated from a single target or several targets are coded to every other pixel in an input and 

(c) Spread operation: calculating the distance. (Source: Malczewski, 1999) 

1.1.1.2 Cost pathways 

This moving window or kernel procedure is used to derive a cost-weighted distance and cost-

weighted direction as part of a least cost pathway exercise. The cost-weighted distance function 

operates by evaluating each input pixel value of a total cost raster and comparing it with its 

neighbouring pixels. The average cost between each is multiplied by the distance between 

them.  Cost-weighted direction is generated also from the total cost raster, where each pixel is 

given a value using a direction-encoded 3×3 kernel, which indicates the direction to the lowest 

cost pixel value from among its local neighbours. Then these two rasters or surfaces are 

combined to derive the least cost pathway or route across the raster, to the target. 
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1.1.1.3 Mathematical morphology 

This concept was first developed by Matheron (1975). Mathematical morphology is the 

combination of map algebra and set theory or of conditional processing and convolution 

filtering. This concept describes the spatial expansion and shrinking of objects through 

neighbourhood processing and extends the concept of filtering. These changes include erosion 

or shrinking, dilation or expansion, opening and closing of raster images. The size and shape 

of the neighbourhoods used are controlled by structuring elements or kernels which may be of 

varying size and form. The processing may not be reversible; for instance, after eroding such 

an image, using an erosion kernel, it is generally not possible to return the binary image to its 

original shape through the dilation kernel. 

Mathematical morphology can be applied to vector point, line and area features but more often 

involves raster data, commonly discrete rasters and sometimes continuous raster surfaces, such 

as DEMs. It has also been used in mineral prospection mapping, to generate evidence maps, 

and in the processing of rock thin section images, to find and extract mineral grain boundaries. 

This method has applications in raster topology and networks, in addition to pattern 

recognition, image texture analysis, terrain analysis and also can be used for edge feature 

extraction and image segmentation. 

To illustrate the effects, consider a simple binary raster image showing two classes, shown in 

Fig. 1.2, the values in the raster of the two classes are 1 (inner, dark grey class) and 0 

(surrounding, white class). This input raster is processed using a series of 3×3 structuring 

elements or kernels (k), which consist of the values 1 and null (instead of 0). 

 

Fig. 1.2. (a) Simple binary raster image (i); and (b) the three structuring kernels (k1, k2 and k3) 

the effects of which are illustrated in Figs. 1.3–1.5. The black dots in the kernels represent null 

values. 
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According to the pattern of its neighbouring values, the kernels are passed incrementally over 

the raster image, changing the central pixel each time. Therefore the incremental 

neighbourhood operation is similar to spatial filtering but with conditional rather than 

arithmetic rules controlling the modification of the central value. A simple dilation operation 

involves the growth or expansion of an object and can be described as: 

                     

Where o is the output binary raster, i is the input binary raster and k is the kernel which is 

centred on a pixel at i, and d indicates a dilation. The Minkowski summation of sets (a  b) refers 

to all the pixels in a and b, in which  is the vector sum, and a belongs to set b, and b belongs to 

set a (Minkowski, 1911). The values of i are compared with the corresponding values in the 

kernel k, and are modified as follows: the value in o is assigned a value of 1 if the central value 

of i equals 1, or if any of the other values in k match their corresponding values in i; if they 

differ, the resultant value in o will be 0. The result of this is only to modify the surrounding 

outer values by the morphology of the kernel. The effect of a dilation, using kernel k1, is to 

add a rim of black pixels around the inner shapes  and in doing so the two shapes in the binary 

image are joined into one, both having been dilated, as in Fig. 1.3b. 

If the output o1 is then dilated again using k1, then a second rim of pixels is added and so on. 

By this process, the features are merged into one. Dilation is commonly used to create a map 

or image that reflects proximity to or distance from a feature or object, such as distance from 

road networks or proximity to major faults. These distance or ‘buffer’ maps often form an 

important part of multi-layer spatial analysis. (Source: Liu and Mason, 2009) 

 

Fig. 1.3. Dilation, erosion and closing: (a) the original image (i); (b) dilation of i using k1 to 

produce o1; (c) dilation of o1 also using k1 to produce o2; and (d) erosion of o1 using k1 to 

produce o3. Notice that o3 cannot be derived from i by a simple dilation using k1; the two objects 
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are joined and this effect is referred to as closing. The pixels added by dilation are shown black 

and those pixels lost through erosion are shown with pale grey tones. 

(Source: Liu and Mason, 2009) 

A simple erosion operation (a b) has the opposite effect, where  is a vector subtraction, so that 

it involves the shrinking of an object using the Minkowski subtraction, and is described by   

 

where ε indicates an erosion. The values in o are compared with those in k and if they are the 

same then the pixel is ‘turned off’ i.e. the value in o will be set to 0. The effect of using kernel 

k1, is the removal of a rim of value 1 (grey) pixels from the edges of the feature shown in Fig. 

1.3b to produce that shown in Fig. 1.3d. It can be noticed that the output o3, which is the product 

of the sequential dilation of i, then erosion of o1, results in the amalgamation of the two original 

objects and that the subsequent shrinking produces a generalized object which covers 

approximately the area of the original, an effect known as closing (dilation followed by 

erosion). 

In Fig. 1.4b, an erosion operation is performed on the original i, removing one rim of pixels 

and causes the feature to be subdivided into two. When this is followed by a dilation, the result 

is to restore the two features to more or less their original size and shape except that the main 

feature has been split into two. This splitting is known as an opening and is shown in Fig. 1.4c. 

 

Again, repeated dilations of the features after opening will not restore the features to their 

appearance in i. 
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Fig. 1.4. Erosion, dilation and opening: (a) the original image (i); (b) erosion of i using k to 

produce o4; (c) subsequent dilation of o4, using k1, to produce o5. Note that the initial erosion 

splits the main object into two smaller ones and that the subsequent dilation does not restore 

the object to its original shape, an effect referred to as opening.  

 

Fig. 1.5. Anisotropic effects: (a) the original image (i); (b) dilation of i using k to produce o6, 

causing a westward shift of the object; and (c) dilation of i using k3, producing an elongation 

in the NE-SW directions to produce o7. 

Closing can be used to generalize objects and to reduce the complexity of features in a raster. 

Opening can be used to perform a kind of sharpening or to add detail or complexity to the 

image. Dilation and erosion operations can also be carried out anisotropically in specific 

directions. Such directional operations are often relevant in geological applications where there 

is some kind of structural or directional control on the phenomenon of interest. 

For example, the effect of kernel k2 on i is shown in Fig. 1.5a, where the effect is a westward 

shift of the features by 1 pixel. The effect of kernel k3 is to cause dilation in the NW–SE 

directions, resulting in an elongation of the feature (Fig. 1.5b). To consider the effect of 

mathematical morphology on continuous raster data, we can take the binary image (i) shown 

in Figs. 1.2–1.5 to represent a density slice through a raster surface, such as an elevation model. 
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In this case, the darker class represent the geographical extent of areas exceeding a certain 

elevation value. Fig. 1.6a shows the binary image and a line of profile (Fig. 1.6b) across a 

theoretical surface which could be represented by image (i).The effect of simple dilation and 

erosion of the surface is shown in Fig. 1.6c. 

 

Fig. 1.6 (a) The original input image with the position of a profile line marked; (b) the 

theoretical cross-sectional profile with the shaded area representing the geographical extent of 

the darker class along the line shown in (a); and (c) the effect on the profile of dilations and 

erosions of that surface. 

Here it can be seen that dilations would have the effect of filling pits or holes, and broaden 

peaks in the surface, while erosions reduce the peaks or spikes, and widen depressions. Such 

techniques could therefore be used to correct errors in generated surfaces such as DEMs. But 

the errors in DEMs cannot be properly corrected by merely smoothing. So for correction of 

DEM errors a modification of the mathematical morphology technique, known as 

morphological reconstruction has been proposed. In this case, the original image is used as a 

mask and the dilations and erosions are performed iteratively on a second version of the same 

image until stability between the mask and marker images is reached and the image is fully 

reconstructed and no longer changes, when the holes are corrected (Fig. 1.7). 

Since morphological reconstruction is based on repeated dilations, rather than directly 

modifying the surface morphology, it works by controlling connectivity between areas. The 

marker could simply be created by making a copy of the mask and either subtracting or adding 

a constant value. The error-affected raster image is then used as the mask, and the marker is 

dilated or eroded repeatedly until it is constrained by the mask, i.e. until there is no change 

between the two, and the process then stops. By subtracting a constant from the marker and 

repeatedly dilating it, extreme peaks can be removed, whereas by adding a constant and 

repeatedly eroding the marker, extreme pits would be removed. The extreme values are 

effectively reduced in magnitude, relative to the entire image value range, in the reconstructed 
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marker image. This technique can be used selectively to remove undesirable extreme values 

from DEMs.    

 

Fig. 1.7. Mechanism of morphological reconstruction of an image, as illustrated by a profile 

across the image: (a) in this case, by repeated dilations of the marker until it is constrained by 

the mask image; (b) the extreme peaks are reduced in magnitude in the reconstructed image. 

 

1.1.2 Extended neighbourhood 

The term ‘extended neighbourhood’ is used to describe operations whose effects are 

constrained by the geometry of a feature in a layer and performed on the attributes of another 

layer. These extended neighbourhood operations can be further described as focal and zonal. 

If for instance slope angles must be extracted from within a corridor along a road or river, the 

corridor is defined from one layer and then used to constrain the extent of the DEM from which 

the slope angle is then calculated (Fig. 1.8). 

 

Fig. 1.8. Focal statistics: (a) a binary image representing a linear target feature (coded with a 

value of 1 for the feature and 0 for the background); (b) a 10m focal image created around the 

linear feature, where each pixel is coded with a value representing its distance from the feature 

(assuming that the pixel size is 5m×5 m), areas beyond 10m from the feature remain coded as 
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0 ; and (c) binary focal zone mask with values of 1 within the mask and zero outside it. This 

has a similar effect to a dilation followed by a reclassification, to produce a distance buffer.  

1.1.2.1 Focal operations 

Working within “neighborhoods” this class of operations implements a moving window 

algorithm to modify cell values in the input layer (Lein). A focal operation is used for 

generating corridors and buffers around features. Focal operations are those that derive each 

new value as a function of the existing values, distances and/or directions of neighbouring 

locations. The relationships may be defined by Euclidean distance, travel cost, engineering cost 

or inter-visibility. Such operations could involve measurement of the distance between each 

pixel (or point) position and a target feature(s). A buffer can then be created by reclassification 

of the output ‘distance’ layer. This allows specific values to be set for the original target 

features, with the buffer zones and for the areas beyond the buffers. 

1.1.2.2 Zonal operations 

These operations are applied to define regions or zones in the input surface. Zones explain 

collection of cells that exhibit similar attributes which can be created using (1) reclassification 

calculations based on area, shape or perimeter or (2) categorical overlay developed from binary 

“cookie cutters” to extract cell values from a raster layer (Lein). A zonal operation also involves 

the use of the spatial characteristics of a zone or region defined on one layer, to operate on the 

attribute(s) of a second layer or layers. Since zonal operations most commonly involve two 

layers, this process falls into the binary operations category. An example is given in Fig. 1.9 

where zonal statistics are calculated from an input layer representing the density of forest 

growth, within the spatial limits defined by a second survey boundary layer, to provide an 

output representing, in this case, the average forest density within each survey unit. Here it can 

be seen that the two raster inputs contain integer values but that the output values are floating- 

point numbers, as is always the case with mean calculations. 
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Fig. 1.9. Zonal statistics: (a) forest density integer image; (b) survey boundaries (integer) 

image; and (c) the result of zonal statistics (in this case a zonal mean) for the same area. Note 

that this statistical operation returns a non-integer result.  

 

 

References 

• Carranza, E. J. M., 2009, Geochemical Anomaly and Mineral Prospectivity Mapping 

in GIS, pp. 42-44. 

• Harvey, F., 2008, Primer of GIS: Fundamental Geographic and Cartographic Concepts, 

The Guilford Press, pp. 258-259. 

• Malczewski, J., 1999, GIS and Multicriteria Decision Analysis, John Wiley & Sons, 

pp. 52. 

• Liu, J. G., and Mason, P. J., 2009, Essential Image Processing and GIS for Remote 

Sensing, John Willey & Sons, pp. 185-192. 

• Lein, J. K., Environmental Sensing: Analytical Techniques for Earth Observation, 

springer, pp. 308-310. 

 


